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1
METHOD FOR LOCAL ADJUSTMENT OF
REGULARIZATION PARAMETERS FOR
IMAGE QUALITY OPTIMIZATION IN
FULLY 3D ITERATIVE CT
RECONSTRUCTION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is the U.S. National Phase application
under 35 U.S.C. §371 of International Application No.
PCT/EP2014/070424, filed Sep. 25, 2014, published as WO
2015/044237 on Apr. 2, 2015, which claims the benefit of
European Patent Application Number 13186649.3 filed Sep.
30, 2013. These applications are hereby incorporated by
reference herein.

FIELD OF THE INVENTION

The invention relates to a CT image reconstruction
method, to an image processing apparatus, to a computer
program element, and to a computer readable medium.

BACKGROUND OF THE INVENTION

In computed tomography, there are a range of different
reconstruction algorithms for computing cross-sectional
images (also known as “slices™) from projection data of an
object gathered during measurement at a detector of a CT
scanner. There are reconstruction algorithms that iteratively
build up a final image from an initial image. Some iterative
reconstruction algorithms use regularization. The regular-
ized “reconstruction problem”™, that is, “Given a constraint
on image property, how does one get from the initial image
to the final image?”, is commonly formulated in terms of
minimizing a cost function consisting of a data term and a
regularization term. A further algorithmic variant is regular-
ized statistical iterative reconstruction, where the data term
accounts for a statistical model of the noise of the underlying
measurements while the regularization term incorporates
a-priory knowledge about the image to reconstruct. WO
2013088294 A1 describes such a statistical iterative recon-
struction algorithm. It has been observed however that
statistical model and regularization may lead to certain
image properties like local resolution or SNR (signal-to-
noise-ratio) to vary over the image in an undesirable way. A
number of approaches have been proposed to enforce for
instance uniformity of resolution such as J A Fessler et al in
“Spatial Resolution Properties of Penalized-Likelihood
Image Reconstruction: Space-Invariant Tomographs”, IEEE
Transactions on Image Processing, 1996, 5, 1346-1358.

SUMMARY OF THE INVENTION

There may therefore be a need for an alternative image
reconstruction method and related apparatus.

The object of the present invention is solved by the
subject matter of the independent claims where further
embodiments are incorporated in the dependent claims. It
should be noted that the following described aspect of the
invention equally applies to the image processing system, to
the computer program element and to the computer readable
medium.

According to a first aspect of the invention there is
provided a CT image processing method, including the
following steps of:
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2

receiving projection data acquired of a volume along a
scan direction. One or more image points of said volume
reconstructable, in an iterative reconstruction operation,
from at least a part of said projection data;

as a function of a position in a volume reconstructed in a
previous iteration or otherwise reconstructed, computing a
regularization parameter for an image point at said position
for a next iteration in said iterative reconstruction operation;

as a function of a scan position long the scan direction,
normalizing the regularization parameter relative to a region
of interest, ROI, of an object in a plane (for instance a slice)
across the volume at said scan position;

when iteratively reconstructing, in said next iteration, said
image point from the projection data for, applying said
normalized regularization parameter. The reconstructed vol-
ume is an image of the scanned volume.

According to one embodiment, the computing of the
regularization parameter is a function of noise behavior or
noise level in that part of the projection data that is recon-
structable for said image point.

More particularly, the regularization parameter (and/of
the normalization) is computed from back-projections of
statistical variances obtained from at least that part the
projection data that reconstructs for the image point. How-
ever, using variances is a non-limiting example to capture
the noise level or behavior and other suitable statistical
quantities may likewise be used instead of or alongside with
variances.

In iterative reconstruction, there is i) a data term that
varies with how well a forward projected image point
estimate (generated during the iterations) matches the actu-
ally measured projection data and ii) a regularization term
that enforces expected image characteristics such as smooth-
ness by returning a response for each estimated image point.
The regularization parameter is then to control the strength
of said response by multiplicative or additive combination
with the regularizer’s response.

In one embodiment, the spatially dependent computing
results in a locally varying of said regularization parameter
across image points in said plane and the so computed
regularization parameter acts in the iterative reconstruction
in such a manner so as to bias the reconstruction for
estimates with more uniform noise appearance within the
slice. At the same time, the normalization in scan direction
of the so computed reconstruction parameter acts so as to
maintain in a statistical sense the balance between the data
term (which may be considered a token for the fidelity of the
estimated image points) and the regularization term during
the course of the iterations. For instance, for scan positions
where essentially all measurements are less noisy due to
smaller patient/object dimensions (such as the periphery or
in tapered objects) or low radiodensity regions (such as the
chest region) would otherwise receive significant over-
smoothing (too high betas).

For instance, and according to one embodiment, the
normalization step includes computing regularization
parameters for a further image point in the ROI and for
further image points in the ROl in a second plane at a second
scan position such that the mean or a weighted mean of the
regularization parameters relative to said ROI in the first
plane essentially equal the mean or a weighted mean of the
regularization parameters relative to said ROI in the second
plane.

According to one embodiment, the method further
includes the step of identifying said ROl in a cross-sectional
image through a volume from the or any previous iteration
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or from a reference cross-sectional image previously
obtained by a different reconstruction method.

In one embodiment, for each scan position, the normal-
ization of the regularization parameter is only relative to said
ROI in said plane at said scan position. More particularly,
scaling parameters used in the normalization are computed
relative to the ROI in each plane (or “slice”) only. The
application of the scaling factors itself is however done
across all image points in the respective slice or scan
position.

According to one embodiment, the ROI is pre-computed
or user defined based on the volume or on a volume from any
previous iteration or is pre-computed from a cross-sectional
image reconstructed in a previous iteration. The ROI may be
computed in one embodiment by thresholding. In one
embodiment, the region of interest is i) a portion of the
object of a specific tissue type, in particular soft tissue, or ii)
a specific anatomical region or structure. In one embodi-
ment, the ROI is typically a part (not necessarily connected
and/or may have holes) of a region defined by the intersec-
tion of the object with the respective plane considered.

In one embodiment the ROI is computed to exclude 1)
image data representative of a peripheral region of said
object in said plane or ii) excludes image points represen-
tative of an object portion having an attenuation coefficient
lower than a threshold or iii) excludes image data represen-
tative of object background.

According to one embodiment, the extent or width of the
peripheral region in the ROI that is to be disregarded for the
normalization is user adjustable in one embodiment. In one
embodiment, the width of the peripheral region remains
constant for each sliced/plane or is adapted as a function of
the scan position or as a function of other quantities such as
image quality metrics. The method as proposed herein cuts
out certain non-regions of interest that may otherwise unfa-
vorably diminish or even nullify the desired effects of the
normalization. This can be done in one embodiment, by
computing a mask that erodes or otherwise modifies the
threshold ROI image portions to exclude the areas men-
tioned above.

According to one embodiment, the computing of the
regularization parameter and/or the corresponding normal-
ization includes re-using one or more terms, said one or
more terms previously formed in the or a previous iteration
for updating a previous estimate for the image point. This
allows for a more efficient computation.

According to one embodiment, the regularization param-
eter or the normalization of the regularization parameter are
computed from a parameterized first function of one or more
back-projections of a parameterized second function of
statistical variances obtained from the projection data.

According to one embodiment, the parameterized second
function is an exponential function with the exponent being
either a fixed or an adjustable parameter p. In particular
embodiment, p='%, in other words, the second function is
essentially the square root of the back-projected inverse
statistical variances of the projection data. In one embodi-
ment it only either the first (via the second function) or the
second parameterization (via the second function) that is
variable, but in preferred embodiment both parameteriza-
tions are variable. The singly or doubly parameterization add
a degree of freedom to better adapt the method to specific
applications or noise situations.

In one embodiment, the so calculated regularization
parameters are either calculated on an image grid that differs
in resolution (typically lower) from the image to be recon-
structed or are re-sampled to this typically lower resolution

10

15

20

25

30

35

40

45

50

55

60

65

4

after calculation on the original grid. During the iterative
reconstruction update, the local regularization parameter is
then calculated via interpolation from the calculated or
represented values. This allows saving memory and CPU
time.

In sum, the spatially varying of regularization parameters
and the normalization (or scaling) of same in respect of
regions of interest together combines for a better noise/
resolution trade-off and thus better dose utility across scans
with varying total attenuation profile. Having a uniform
noise distribution across the reconstructed image and yet not
giving away resolution in image portions that afford it
without violating the dosage constraint is of particular
benefit in image based intelligence gathering such diagnos-
tics. The human image analyst is not “coaxed” into a false
sense of security by an image that appears throughout at
uniform resolution and therefore “trustworthy”. Very much
unlike uniform-resolution-only approaches to image produc-
tion, the proposed method yields imagery that “indicates” to
the user which image portions they can trust by having them
appear at higher resolution than those portions where noise
is more prevalent.

According to one embodiment, the numbers in the pro-
jection data encode attenuation obtained during a phase
retrieval step in a differential phase contrast imaging opera-
tion. According to one alternative embodiment, the numbers
in the projection data encode projections of small scatter or
projection of the phase gradient.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the invention will now be
described with reference to the following drawings wherein:
FIG. 1 shows schematically a computed tomography (CT)
imaging arrangement;
FIG. 2 shows a block diagram of an image reconstructor;
FIG. 3 shows images produced by reconstructor of FIG.
2;
FIG. 4 shows further images produced by reconstructor of
FIG. 2,
FIG. 5 shows a flow chart of an image processing method.

DETAILED DESCRIPTION OF EMBODIMENTS

FIG. 1 illustrates an imaging system 100 such as a
computed tomography (CT) scanner. The imaging system
100 includes a stationary gantry 102 and a rotating gantry
104, which is rotatably supported by the stationary gantry
102. The rotating gantry 104 rotates around an examination
region 106 (bore) about a longitudinal or z-axis. A support
108, such as a couch, supports a subject in the examination
region 106 and can be used to position the subject with
respect to x, y, and/or z axes before, during and/or after
scanning.

A radiation source 110, such as an x-ray tube, is supported
by the rotating gantry 104 and rotates with the rotating
gantry 104 about the examination region 106, and emits
radiation from a plurality of different projection angles/
directions. In one embodiment there is a source collimator
112 is disposed between the x-ray tube and an examination
region and collimates the emitted radiation to produce a fan
or cone shaped x-ray beam. The collimated beam traverses
the examination region and an object or subject therein
which attenuates or otherwise changes (for instance,
refracts) the beam as a function of the radiodensity (or the
local refractive index) of the object or subject and illumi-
nates a detector 114. The detector includes a radiation
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sensitive array of detector pixels. The detector is disposed
across the examination region from the x-ray tube. The
detector array may be 1D (that is, it includes a single row of
detector pixels) or, preferably, is a 2D detector including a
plurality of detector pixel rows.

The detector pixels then detect said beam after traversal of
the object or subject to generate projection data indicative of
the attenuation (or change) caused by matter in the object or
subject (in the following referred to as only as the “imaging
object” or simply the “object”). Because of the rotation of
radiation source 110 around the object, projection data is
detected for each projection angle. The rotation usually
sweeps out a full circle or any desired arc segment less than
360°. The couch or gantry is advanced continuously or
stepwise along the scan direction z (that passes through an
isocenter in the object) and the above is repeated for a
desired range of scan positions z on the z-axis. In an
exemplary embodiment, the projection data PD (also
referred to herein as the “measured data) produced by the
detector is formed from a collection of sinograms each
indexed or otherwise associated with the respective scan
position on the scan direction z-axis. A sinogram is a
structure where to each projection direction/rotation angle 6
there is associated the projection raw image data as detected
by the detector pixels at the respective angle 6). However
this merely one embodiment of how the projection data PD
may be structured. Other data structures for the projection
data is also envisaged herein so long as the raw image data
item associated with its respective pixel position, projection
angle and scan position z is retrievable. In one preferred
embodiment, the projection data is supplied in the scanner’s
original geometry as a data stream of projection views as
detected by the detector pixels.

A reconstructor 116 reconstructs the projection data to
generate a volumetric image data indicative of the object or
subject. More particularly the Examination region in the
scanner’s bore is the “image space” defined by points in the
scanner’s bore where the object resides during imaging and
where volumetric data is defined. The volumetric data is
made up from trans-axial cross sectional slice images
(“slices™), one slice for each scan position z. The image
points within each slice are defined by (x, y) in-image
coordinates in the respective reconstruction plane at scan
position z. as shown in FIG. 1. Put differently, the recon-
struction is essentially a transformation from projection
space (where the sinograms are defined) into image space.

The reconstructor 116 is configured to utilize, at least, an
iterative reconstruction algorithm with regularization. Gen-
erally, for an iterative reconstruction algorithm, an initial
image (made up from voxels or other image elements
defined in image space) is forward projected producing
estimated projection data, the estimated projected data is
compared with the actually measured projection data pro-
duced by detector, and the initial image is updated if the
difference between the estimated projected data and the
measured projection data does not satisfy predetermined
stopping criteria. The above is repeated using the updated
image until the stopping criteria is satisfied.

A suitable iterative statistical reconstruction algorithm
incorporates a noise model. As described in greater detail
below, in the illustrated embodiment, iterative statistical
reconstruction algorithm incorporates reconstruction algo-
rithm may be based on expectation-maximization (EM),
maximum likelihood (ML), and/or other iterative recon-
struction algorithm.

An image processor 118 processes the volumetric image
data and generates one or more images indicative of the
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6

detected radiation. A display 120 is utilized to present the
one or more images. A general purpose computing system
serves as an operator console 122, and includes an output
device such as a display and an input device such as a
keyboard, mouse, and/or the like. Software resident on the
console 122 allows the operator to control the operation of
the system 100, for example, allowing the operator to select
a protocol that employs the iterative statistical algorithm,
identify a noise model for the iterative statistical algorithm,
identify a weighting factor for the iterative statistical algo-
rithm, initiate scanning, etc.

FIG. 2 illustrates broadly the general components of the
reconstructor 116 according to one embodiment. The illus-
trated reconstructor 116 includes a forward projector 202
that forward projects an initial image to generate estimated
projection data. A comparator 204 compares the estimated
projection data with the measured projection data. A com-
parison between the estimated projection data and the mea-
sured projection data delivers correction data. The correc-
tion data is used to update the forward projected image (via
a backprojector 208), and the updated image is used as input
for the forward projector or as a final image, depending on
predetermined stopping criteria 206. The backprojector 208
backprojects the difference to generate the updated image
based on an iterative statistical reconstruction algorithm.
The stopping criteria 206 may be based on the closeness of
the forward projected data to the measured projection data,
a number of iterations, and/or other stopping criteria.

An image updater 210 updates, according to an update
function (on which more below), the current image based on
the backprojected correction data and an update function
214 comprising a statistical model and a regularization
method. Where the comparator 204 determines that the
comparison satisfies the predetermined stopping criteria
206, this image is used as the final image. Where the
comparator 204 determines that the comparison does not
satisfy the predetermined stopping criteria 206, the iterative
process continues with a new forward projection of the
updated image via the forward projector 202 as described
herein. In the illustrated embodiment, reconstruction algo-
rithm storage 212 stores one or more statistically based
update functions 214. The image updater 210 receives an
initial image and processes the image using an iterative
reconstruction algorithm with regularization. Regularization
is via a regularization parameter that is used by the image
updated 210. The regularization parameter is adapted by a
regularization parameter adaptor (“beta adaptor”) 216. To
better explain operation of beta adapter, a brief summary of
regularized iterative reconstruction is given in the following.

ITterative image reconstruction with regularization has
been formulated through a cost function with a data fidelity
term and a regularization term. The latter term is multiplied
by a regularization factor 3, and then both terms are added
to determine a total cost, which is minimized. A generic cost
function can be expressed as C(W)=F(w)+p*R(w), where p
represents an image, F(u) represents the data fidelity term,
R(u) represents the regularization term, and [ is a free
parameter and represents the regularization factor that con-
trols the strength of the regularization.

Broadly stated, the regularization term (or penalty term or
“regularizer”) is a function that responds to the noise level
in an image and the response varies therewith: for instance,
there is high response for high noise and low response for
low noise. The regularization parameter is for adjusting the
response of the regularization term to control image quality
such as SNR or resolution.
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For iterative reconstruction with regularization, the data
fidelity term compares the forward projected image with the
measured projections, optionally including a noise model on
the projection.

Minimizing the cost function for instance by ML and
assuming a Gaussian or Poisson model noise in the mea-
sured data leads generally to the following iterative expres-
sion:

Np 1 ] €8]
D [a;j- — - mf"))] - B-RWM
i=1

U—l

1) _ )
M TEHE e

+ B R

1
a;j-;-a;

i=1

wherein:—
j represents the voxel index;
n represents the iteration number;

p.j(") represents the current value of the voxel j in volume/
image ;
pj("“) represents a next value of the voxel j.

The fraction term on the right of the iterative equation is
called the “update term” or “update function”. In the update
term:

p represents the projection;

i represents the measurement in a projection p;

a,, represent the elements of the system matrix (the inter-
section of voxel j with the ray belonging to measurement i
in a projection p); a, is essentially a discretized version of
the forward projector;

aj represent the forward projection of a unity image in a
projection;

0].2 represents the backward-projection of the statistical
variance of the measurement i;

m,* represents the measured values of the measurement
i of a projection p,

1, represents the forward projection of the image;

(,-1,”) is the difference at iteration n between the mea-
sured and forward projected data and determines whether
the update term adds to or subtracts from current image;

N,, represents the number of indices of all measurements
in projection p for voxel j for which the system matrix
elements are not zero.

The variances o, of the projection data measurements
may be obtained from the measurements themselves in
combination with calibration measurements. The variances
can then be collated into table structures. The variances can
then be accessed and retrieved during the iterations as needs
when computing the various terms of iteration equation (1).

As briefly observed above, the fraction term on right of
iterative expression (1) is the update function or updater for
the statistical reconstruction. It determines how a current
image can be updated in the next iteration.

As can be seen from the structure of eq (1), the data
(fidelity) term and regularization term of the update function
can be re-found in the numerator of the update function,
where the left summand of the numerator essentially corre-
sponds to the data fidelity term and the right part of the
numerator is the regularization term.

The data term is based on a statistical model of the per-
formed measurements while the regularization term incor-
porates a-priory knowledge about the image to reconstruct.
The magnitude of the data term is affected by the data
fidelity which locally depends on the fidelity (variance) of
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the measurements in the projection data that contribute to
the image at a certain location.

The regularization or penalty term R(.) represents the
a-priori knowledge about the image to be reconstructed.

As used herein, “data (fidelity) term” includes any term
within the functional or algorithmic structure of the update
function that operates on projection data PD points. This is
indicated by expressions in eq (1) that have single subscript
i. In contrast, the regularization term R operates on image
elements (shown as j expressions, eg voxels or blobs, etc) so
operates in the image domain.

Although R is written as “R-dot” in equation (1), this is
a non-limiting example only. In one embodiment, an
approximation method has been used (“Paraboloidal Surro-
gates”) to arrive at the update function in equation (1) which
includes taking the derivate of R. Any function can be used
and is envisaged herein, so long as its response behaviour to
image input is as desired. For instance, the regularization
term as applied in the iterative reconstruction typically
favors smooth images (low frequency components over high
frequencies) to accomplish noise reduction and is weighed
by a regularization factor or parameter 8. The factor § (that
is, a positive number) thereby adjusts a certain balance
between the two terms. Due to the use of a statistical noise
model, the data fidelity term varies strongly in magnitude
within an image. This is due to the strongly varying statis-
tical weights derived from the contributing measurements,
as exemplarily represented by the usage of the o the
variances of the measurements in the data term in the
numerator of eqn. (1). There are at least two major, unde-
sirable effects of this variability:

First, data fidelity has been observed to vary strongly from
the centre towards the periphery when reconstructing for
human slice images. At the periphery, the measured data is
more trustworthy as the traversing rays encounter compa-
rably little attenuation (and thus have a high fidelity) than is
the case for rays traversing around the center. Data collected
at the periphery therefore contributes to higher statistical
weights and thus results in relatively high fidelity of the data
term. This in turn results in a non-uniform noise distribution
(higher noise in the peripheral region) as well as a non-
uniform resolution (higher resolution in the peripheral
region) in the final reconstructed image. In this situation,
aiming for uniform resolution across the image as has been
proposed elsewhere, has the following drawback: given a
certain maximal noise level that would result in acceptable
image quality in all parts of the image volume, the resolution
is limited by the region with most noise. A result of forcing
uniform resolution within a given slice may therefore result
in a heavily over-smoothed peripheral region (that is, the
region away from the rotation axis) and in an unacceptably
non-uniform noise distribution. This is why this invention
aims at a uniform noise distribution rather than a uniform
resolution.

Second, when looking in scanning direction z, given the
same photon flux, data fidelity in parts of the patient body
with small extent (for instance, neck region) or low
radiodensity (for instance, lung regions) may be far larger as
compared to parts with larger extent (abdomen etc.) or
higher radiodensity (such as bones). This can be partly
compensated by modulating the photon flux based on a
previously acquired scout scan. However, due to certain
inaccuracies, this is not perfect and thus in real clinical data
highly varying data fidelity along the scanning direction is
common. Aiming for a uniform noise distribution and given
a certain maximally acceptable noise level for body regions
with low data fidelity, this may lead to a resolution that can
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be far below what is possible in body regions with high data
fidelity. Even though the data fidelity is high and there is
only little noise in the measurements, the slice is still
smoothed as to match the overall acceptable noise level (as
shown exemplarily in the slice shown in the bottom image
of FIG. 4.a)) although a far better resolution would be
expected at this location given the (locally) administered
dose.

The above problems become even more pronounced in a
low dose setting and/or in conjunction with non-linear
regularization schemes, such as the Huber penalty. In case of
photon starvation in certain body regions very strong regu-
larization is required to prevent streak artifacts. For non-
linear regularization terms, certain minimum regularization
strength is required to prevent speckle (“salt & pepper”)
noise which also depends on the local data fidelity. Both
effects lead to an over-smoothing in image regions with
better noise characteristics (higher data fidelity) when aim-
ing for a uniform noise distribution.

In order to address both of the above issues, the proposed
beta adapter 216 is configured to:

adapt and vary in the image reconstruction plane, the
regularization parameter beta is such a manner so that it acts
on regularization term R to achieve more uniform noise in
the reconstructed image.

normalize the adapted weights in scan direction z (that is,
a scaling factor per slice) so as to maintain in a statistical
sense, balance between the data term and the regularization
term and thus enforce optimal dose utility and diagnostic
value across all scan positions.

In order to better understand operation of beta adapter as
proposed herein, reference is now made to the general
equation for iterative reconstruction as per equation (1).

To better understand the rationale of the proposed beta
adaption, the general function of the regularization param-
eter is briefly reviewed in more detail.

Typically the parameter beta is constant or at least spa-
tially invariant (that is, is independent of image element
coordinate j) and controls equilibrium at convergence
between the data term (the left part of the numerator in
equation (1)) and the regularization term (R-dot in the right
part of equation (1)) to achieve convergence of the iterative
reconstruction.

A typical penalty or regularization R measures the local
variation (“roughness”) in a small neighbourhood of a voxel
j- In a fully converged image the numerator in equation (1)
needs to be zero, thus the product of beta and the local
roughness and the data term cancel each other out. There-
fore, once converged and if beta was spatially invariant, the
local roughness will vary according to the (spatially variant)
size of the data term. But if beta is made to vary spatially in
the same way the data term does, it is then the roughness R
which will become spatially invariant. It is proposed herein
then to vary beta spatially in such a manner so as to achieve
the latter.

How exactly beta is made to vary herein will now be
explained in more detail. Assuming then that we have a fully
converged image, there is then, as briefly mentioned earlier,
equilibrium between the contributions of data term and
regularization term in the numerator of the above equation.
The data term will include noise from the measured line
integrals 1,. The statistical variance in the data term contrib-
uting to the numerator can be expressed via the variances of
the measurements as:

20

25

35

40

45

@

wherein the index “d” denotes the variance of the “data
term”.

The statistical variance of the data term, that is, the first
part of the numerator in the update equation, varies accord-
ing to the measurements 1,. Each of these measurements has
a variance o,°. Suppose the terms in (1) m,”” denote the
forward projection of the fully converged (and thus constant
for this purpose) image. Thus the variance of the sum of all
the terms in the first part of the numerator yields, in
approximation, equation (2). This data statistical variance as
expressed by equation (2) is spatially variant, that is it
depends on j. It is then assumed herein, that information
about the noise in the converged image is captured by o
reflected in the functional behaviour of the regularization
term because the two terms can be considered to cancel each
other when convergence is assumed as observed above.

For the regularization term contribution to the numerator
to be constant at equilibrium, the spatial variance of the
noise has to be captured by a scaling of a global beta term
that reflects or follows the spatial variance as per eq. (2). It
is therefore proposed herein to configure beta adapter 216 to
compute a spatially varying regularization parameter for a
given image element j according to:

®

Np
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wherein § denotes a constant global regularization param-
eter that allows to adjust the regularization response to
achieve a desired overall noise level. The global regulariza-
tion parameter {3 is in one embodiment pre-set by a human
user or can be found automatically as described in Appli-
cants’ WO 2013/088294 A1 In one embodiment, the adapted
beta 3, is computed by the square root of the backprojection
of the inverse of the variances o, of the projection data that
correspond to image element j. The so adapted regulariza-
tion parameter f3; allows achieving approximately uniform
local noise in essentially the same manner as the specific
regularization term R captures image noise at image position

50 j. In an alternative embodiment, the square root in equation

(3) is replaced by an exponentiation with a positive exponent
p (equation (3) being a particular embodiment for p=Y%) that
can be chosen to adapt to specific applications or noise
situations. In a yet further embodiment, the inverse of the
variances is replaced by a parameterized function (with
parameter q) of the variances, specifically the exponentia-
tion (equation (3) being a particular embodiment for g=-1)
of'the variances with an exponent that can be chosen to adapt
to specific applications or noise situations.

It is of note herein that the above convergence consider-
ations do not depend on the specific way the regularization
term in equation (1) is calculated. Applicant’s experiments
have shown good results for a range of different regulariza-
tion term types and these included as embodiments herein.
More specifically, according to one embodiment, R is the
Huber penalty or is any other type of non-linear penalty that
is based on (possibly weighted) sums or differences of image
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elements (voxels or blobs) in a neighbourhood of an image
position j. For instance, according to one embodiment, R-dot
can be a weighted sum of differences of a central voxel j to
each of its neighbouring voxels although higher order varia-
tions and larger neighbourhoods are likewise envisaged
herein. These are non-limiting exemplary embodiments for
R and other types are likewise envisaged herein. According
to one embodiment, beta adaptor computes f3; based on terms
in the update equation (1) as per the current or any previous
iteration. As one example, the square root expression in (3)
is approximated by the left term in the denominator of the
update equation (1) from a previous iteration. When apply-
ing an ordered subset algorithm, an accumulation of the left
term of the denominator in the update equation (1) over
multiple or all subsets in a previous iteration is used. Using
this approximation allows saving CPU time by replacing one
full back-projection of the inverse variances above. How-
ever this is a non-limiting example as other terms can be
likewise used in other embodiments as long as they suitably
reflect (that is vary with) the noise level and/or behaviour of
the projection data that correspond to the image point to be
reconstructed.

According to one embodiment, beta adapter not only
adapts beta within a slice but also adapts slice by slice along
the scan direction to prevent significant over-smoothing
(that is, too high betas) in regions of a reconstruction
volumes (that extend along the scan direction regions) where
the measurements become generally less noisy due to
smaller patient/object dimensions or lower radiodensity.
This applies in general to tapered structures which are
imaged along their longitudinal axis or to regions with air
enclosures like the chests of patients. This effect can be seen
in the 2 lower images in FIG. 4.

To achieve this adaption along scan direction, beta adap-
tor includes in one embodiment a normalizer 216 module
that operates to normalize the adapted (x,y,z) slice by slice
using a scaling factor s(z). The scaling factors s(z) for each
slice z (in scanning direction) are obtained from a mean (or
weighted mean) of the f(x,y,z) within a specific sub-region
m(x,y,z) in the respective slice. The region m(x,y,z) is
determined by applying a mask m to the respective B(x,y,z)
that allows focusing or restricting the normalization of the f3,
onto those regions that are of interest, such as soft tissue.
Otherwise possibly regions of no interest would dominate
the normalization with the adverse effect of diminishing or
even nullifying the intended outcome. The mask is in
general different for each slice z.

An example of such a mask is shown in the rightmost
image in FIG. 3. This mask can be obtained in any way that
is suitable to segment the regions that are of interest, such as
soft tissue. In the example below, the mask (which is
essentially an index function) is obtained in one embodiment
via thresholding of the image volume of attenuation values
to obtain a template for mask m at position z. In one
embodiment, there is a subsequent step of “eroding” this
template to exclude further portions in that slide and to
further restrict the set of those f(x,y,z) in slice z on which
the computation of the scaling factor s(z) is to be based as
will now be explained in more detail. It is the so eroded
template (as defined by the mask) that then exclusively
defines the set or regions of all § values relative to which the
scaling factors s for the normalization are then to be com-
puted.

According to one embodiment the mask is computed by
thresholding to segment body regions. The segmented image
is then eroded by morphological operations to exclude inner
or outer peripheral regions of the ROI. The excluded regions
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are not representative of the variance of the data term with
respect to those regions of diagnostic or other interest where
noise is to be controlled for improved image quality. This is
due to the many tangential measurement rays that see only
little attenuation. Other regions that are not of interest are
likewise excluded by thresholding and/or subsequent ero-
sion, for instance, background image data that represents the
empty space in the bore surrounding the patent or object. By
“inner” peripheral regions, the border portion of cavities are
meant. Within each slice, the scaling factor s(z) is then
determined as the reciprocal of the mean of those £, (as
determined via equation (3) or other approximations as
described above) within the eroded mask from the same
slice. That is, the mask/index function is multiplied with the
B, and the mean of the beta values is determined for each
slice to arrive at the s(z). Subsequently s(z) is applied by
multiplying all §; from each slice with the corresponding
s(z) from the same slice. As a result, the mean value of the
betas within the region of interest is approximately constant
over z (for each slice) and, therefore, the manner in which
the data term and regularization term balance each other
during the iterations is maintained essentially constant
across Zz.

The region m(x,y,z) is a cross section of a region of
interest ROI in the respective slice with the understanding
that said ROI will normally extend across a number of slices
and the computations described above in respect of the
normalization (including the mask computations) will need
to be executed for each slice of the ROI

In one embodiment the mask is determined on a reference
image previously obtained from a traditional reconstruction
like filtered back projection. In an alternative embodiment
the iterative reconstruction proceeds on the basis of a global
spatially invariant beta only for a number of k initial
iterations, and the mask is then determined on the updated
image for the k-th iteration. The parameter k for the initial
iterations is either fixed by an application specific protocol,
or is determined adaptively via image quality measures or
indicated by a user. For instance, the user may review the
sequence of updated images generated during execution of
the iteration and then chooses by mouse-click or other Ul
means a desired one of the updated images (for instance, one
that already shows in sufficient detail the ROI) from which
the mask is to then computed by normalize 216. The
normalization operation of normalizer 218 is illustrated in
the example of FIG. 3. The left image in the upper shows the
reference image on which the mask computation is based,
either pre-computed (for instance from silhouette data taken
from a scout image or cross-sectional images obtained by a
previous reconstruction such as, but not limited to, a con-
ventional FBP reconstruction) or taken from any previous
iteration as described above. The image to the right shows
the computed mask with regions of interests are shown in
white in the blocked out regions of non-interest are shown
in black. The central image shows the calculated f3;, shown
here before normalization along z as indicated in FIG. 3 is
applied as can be seen by the much higher values (brighter
parts) in the lower part of the image. The curve (dotted line)
in the lower row shows a line profile curve of the 3, where
beta values are plotted versus a line . across the image plane
at a specific scan position z from the central image above.
The corresponding mask or indicator function of the region
of interest is shown in solid lines. For the calculation of the
scaling factors s(z) only those Ps are taken into account for
which the indicator function is nonzero. The curve also
shows that the periphery of the patient in that slice is not part
of the region of interest and will not be considered in the
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normalization (calculation of s(z)) for the reasons as
explained above. Using thresholding to define the mask is an
exemplary embodiment only and other methods are likewise
envisaged herein. For instance, in another embodiment, after
computing per equation (3) the f;, the mask for normaliza-
tion is computed from the calculated B; instead of from the
image points of attenuation values. This is done by identi-
fication of transition regions where high beta values change
into low beta values or vice versa in a gradient image
derived from the image of the f; or a relative thresholding on
the B, relative to the values in the peripheral and inner
regions. In this manner, image points that represent back-
ground or air cavities can be identified as high beta regions
and the transition region d identifies outer or inner peripheral
region. The mask can then be defined by returning zero for
image points in the transition region and the high beta
region. In other words, in the previous thresholding embodi-
ment, the ROI has been identified based on voxel values of
image points wherein in the instant embodiment identifica-
tion is based on the regularization parameter that has been
assigned by the beta adaptor 216 to the respective image
point. In either of the embodiment, the width d of the
periphery excluded by mask are in general based on empiri-
cal values and are in general dependent on the patient’s size
and extent in the slice under consideration. FIG. 4 shows an
example of the effect of the proposed scaling in scan
direction. In both columns, the beta are varied within the
image plane, in the left column, (a) there is no scaling in
scanning direction z which is then applied in column (b).
The upper row shows the locally varying [ values in the
central x-z plane, middle and lower row show the slice
images as marked in the upper row. In case (a) the higher §
values can be observed in regions of smaller spatial extent
leading to over-smoothing and loss in resolution (lower slice
images). This is remedied in (b). The normalization thus
effectively prevents relative over-smoothing in the lower
images. Operation of reconstructor 116 in respect of beta
adapter 218 is now explained with reference to FIG. 5.

Projection data PD is received at S502 for (not necessarily
contiguous) specific scan positions along a scan direction z.
Image points of an image volume are reconstructable from
the projection data in an iterative reconstruction operation.
The projection data covers an extent of an object or subject
(eg a patient) that resides in an image scanner’s bore during
the scan thus defining the volume to be reconstructed into a
image volume. The method operates in the k-the iteration
step on image points of an initial volume (k=1) or on image
points of a volume reconstructed in a previous iteration step
(1<k).

As a function of a position in said volume, a regulariza-
tion parameter is computed in step S504 by beta adapter 216
for an image point at said position. The regularization
parameter is for application in a next iteration in said
iterative reconstruction operation. In other words, regular-
ization parameter is spatially (that is across the volume)
adaptive or variant.

As a function of the scan position (that is, z-position
within the image volume), the regularization parameter is
normalized by a normalizer 218 at step S506 relative to
region of interest in a plane across the volume at said scan
position. The region of interest is in one embodiment a
particular tissue type of anatomical structure or region in a
human or animal patient. In one embodiment, the plane may
be a slice or any plane perpendicular through the z direction
(scan direction).

Said normalized regularization parameter, is then applied,
as per eq (1), in step S508 by image updater 210 in one or
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more of the next iterations in the iterative reconstruction
operations on the projection data to reconstruct said image
point in the volume. In one embodiment, the reconstruction
operation is based on a data term and regularization term.
The regularization parameter is so computed at step 504 that
it essentially follows or corresponds to the variance of the
data term. The data term’s variance is taken as an indication
for the noise behavior and noise level in the projection data
which is reconstructable into said image point in the volume.

In one embodiment said regularization parameters are
computed on a coarse grid (that is, a grid of positions of
points in the image volume) that differs in resolution from
the image grid for time image points used for the actual
reconstruction of the image volume. The resolution of the
coarse grid representation of the regularization parameters
will be typically lower than the image volume representation
and serves the primary purpose of saving memory space
otherwise needed for a full resolution representation. Upon
calculation of the update equation (1), the regularization
parameter f3; is calculated in one embodiment on-the-fly by
interpolation from the actually computed and represented
values. In one embodiment, a linear interpolation is used
however the method is not limited to a particular interpo-
lation scheme.

In one embodiment, an ordered subset iteration scheme is
used for the iterations and the regularization parameters are
updated with each iteration but may remain constant for a
number of iterations in alternative embodiments. Triggering
the updates for the re-computation and or re-normalization
of the regularization parameters is either via user issued
signal or protocol based or can be triggered in response to
the deviations between the forward projected image esti-
mates and the projection data is established by comparator
204. Also, the regularization parameters need not be com-
puted from the start but until after a number of iterations. In
this case, the iterative reconstruction commences with a
predetermined default value and/or user defined regulariza-
tion parameter and terms from the update equation, calcu-
lated during the updates in the first iterations, are accumu-
lated and used to compute the regularization parameters as
per steps S504. All the same the normalization need not be
performed from the start but only until after a number of
iterations. In this case the updated image after a number of
iterations is used to determine the ROI needed for the
normalization operation S506.

It will be understood that steps S504-S508 are in general
applied simultaneously or concurrently to each image point
in the volume. The image volume on which step S504 is
based may not necessarily be one reconstructed in a previous
iteration but may be an initial volume (y1,) reconstructed by
a conventional FBP or by any other reconstruction method.
Also, “next iteration” or “previous iteration” does not nec-
essarily indicate the immediately previous iteration of the
“immediate next” iteration. Also as used herein “recon-
structed image volume” or “reconstructed image point” does
in the present context not necessarily mean that said volume
or image point are the final output as produced by the
method or apparatus as proposed herein but rather that said
volume or image point are an output or produced after a
certain number of iterations k (z1). Whether or not the
volume is the final output or not is defined by the stopping
criteria 206.

Also, in one embodiment, the projection data encodes
attenuation line integrals obtained by applying a “phase
retrieval” step on detector signals detected by using phase
contrast imaging PCT equipment such as an interferometer
in the scanner system 100. In one embodiment gratings are
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arranged on the detector. A suitable signal processor then
processes said signals from which three sets of projection
data are derived: one for attenuation, one for small angle
scattering and one for differential phase shift. The method as
proposed herein can then be applied to the reconstruction of
any of the three different projection data. The projection data
variances as used in equation (3) are then taken from the
variances of the corresponding projection data to be recon-
structed. The identification of the ROI to compute the
scaling factors is then computed via an image reconstructed
from the corresponding attenuation projection data as
explained herein, and the mask is then mapped to the
differential phase shift contrast or small angle scattering
image. For reconstruction, an iterative reconstruction for
phase contrast imaging as described for instance in T Kéhler
et al in “Iterative Reconstruction for Differential Phase
Contrast Imaging using spherically symmetric basis func-
tions”, Med Phys 38(8), 2011, pp 4542 is then used, addi-
tionally making use of the spatially varying and normalized
regularization parameters as described herein.

In phase contrast imaging, the functional structure of the
terms that include the variances will in general differ from
the from the exemplary embodiment as per equations (2)(3).
In phase contrast imaging, the variances can be estimated
from the phase contrast projection data as per 2/[(mean
intensity(projection data entry for pixel x,y)*n*V?] as
defined in equations (26),(29—matrix entry at row 2, col-
umn 2) by Weber et al in “Noise in x-ray grating-based
phase-contrast imaging”, Medical Physics, Vol. 38, No. 7,
July 2011. V is the visibility and n is the Talbot order, with
n=1, 3, or 5 or 7. n=9 is also envisaged in some embodi-
ments.

The image processer 116 and its components may be
arranged as separate modules arranged in a distributed
architecture and connected in a suitable communication
network.

In one embodiment, image processer IP is arranged as
dedicated FPGAs or as hardwired standalone chips.

In an alternate embodiment, image processer IP and its
components are resident in work station CON running as
software routines thereon. Image processer IP and its com-
ponents may be programmed in a suitable scientific com-
puting platform such as Matlab® and may be translated into
C++ or C routines maintained in a library and linked when
called on by work station CON’s operating system.

In another exemplary embodiment of the present inven-
tion, a computer program or a computer program element is
provided that is characterized by being adapted to execute
the method steps of the method according to one of the
preceding embodiments, on an appropriate system.

The computer program element might therefore be stored
on a computer unit, which might also be part of an embodi-
ment of the present invention. This computing unit may be
adapted to perform or induce a performing of the steps of the
method described above. Moreover, it may be adapted to
operate the components of the above-described apparatus.
The computing unit can be adapted to operate automatically
and/or to execute the orders of a user. A computer program
may be loaded into a working memory of a data processor.
The data processor may thus be equipped to carry out the
method of the invention.

This exemplary embodiment of the invention covers both,
a computer program that right from the beginning uses the
invention and a computer program that by means of an
up-date turns an existing program into a program that uses
the invention.
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Further on, the computer program element might be able
to provide all necessary steps to fulfill the procedure of an
exemplary embodiment of the method as described above.

According to a further exemplary embodiment of the
present invention, a computer readable medium, such as a
CD-ROM, is presented wherein the computer readable
medium has a computer program element stored on it which
computer program element is described by the preceding
section.

A computer program may be stored and/or distributed on
a suitable medium, such as an optical storage medium or a
solid-state medium supplied together with or as part of other
hardware, but may also be distributed in other forms, such
as via the internet or other wired or wireless telecommuni-
cation systems.

However, the computer program may also be presented
over a network like the World Wide Web and can be
downloaded into the working memory of a data processor
from such a network. According to a further exemplary
embodiment of the present invention, a medium for making
a computer program element available for downloading is
provided, which computer program element is arranged to
perform a method according to one of the previously
described embodiments of the invention.

It has to be noted that embodiments of the invention are
described with reference to different subject matters. In
particular, some embodiments are described with reference
to method type claims whereas other embodiments are
described with reference to the device type claims. However,
a person skilled in the art will gather from the above and the
following description that, unless otherwise notified, in
addition to any combination of features belonging to one
type of subject matter also any combination between fea-
tures relating to different subject matters is considered to be
disclosed with this application. However, all features can be
combined providing synergetic effects that are more than the
simple summation of the features.

While the invention has been illustrated and described in
detail in the drawings and foregoing description, such illus-
tration and description are to be considered illustrative or
exemplary and not restrictive. The invention is not limited to
the disclosed embodiments. Other variations to the disclosed
embodiments can be understood and effected by those
skilled in the art in practicing a claimed invention, from a
study of the drawings, the disclosure, and the dependent
claims.

In the claims, the word “comprising” does not exclude
other elements or steps, and the indefinite article “a” or “an”
does not exclude a plurality. A single processor or other unit
may fulfill the functions of several items re-cited in the
claims. The mere fact that certain measures are re-cited in
mutually different dependent claims does not indicate that a
combination of these measures cannot be used to advantage.
Any reference signs in the claims should not be construed as
limiting the scope.

The invention claimed is:

1. A CT image processing method, including the follow-
ing steps of:

receiving projection data acquired of a volume along a

scan direction, one or more image points of said
volume reconstructable, in an iterative reconstruction
operation, from at least a part of said projection data;

as a function of a position in a volume reconstructed in a

previous iteration or otherwise reconstructed, comput-
ing a regularization parameter for an image point at
said position for a next iteration in said iterative recon-
struction operation;
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as a function of a scan position along the scan direction,
normalizing the regularization parameter relative to a
region of interest, ROI, of an object in a plane across
the volume at said scan position, the ROI defined by a
mask m, wherein the normalizing is via a mean or a
weighted mean of the regularization parameter; and

when iteratively reconstructing, in said next iteration, said
image point from the projection data, applying said
normalized regularization parameter,

wherein the regularization parameter is computed from a

parameterized first function of one or more back-
projections of a parameterized second function of spa-
tial variance of noise obtained from the projection data,
and the parameterized first function comprises an expo-
nential function with a fixed or an adjustable positive
exponent parameter, wherein the positive exponent
parameter is less than 1.

2. The method of claim 1, wherein the computing of the
regularization parameter is a function of noise behavior or
noise level in the projection data.

3. The method of claim 1, further including the step of
identifying said ROI in a cross-sectional image through a
volume from the or any previous iteration or from a refer-
ence cross-sectional image previously obtained by a differ-
ent reconstruction method.

4. The method of claim 1, wherein the normalization step
includes:

computing regularization parameters for a further image

point in the ROI and for further image points in the ROI
in a second plane at a second scan position such that the
mean or the weighted mean of the regularization
parameters relative to said ROI in the first plane
essentially equal the mean or a weighted mean of the
regularization parameters relative to said ROI in the
second plane.

5. The method of claim 1, wherein said ROI is pre-
computed or user defined based on the volume or on a
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volume from any previous iteration or is pre-computed from
a cross-sectional image reconstructed in a previous iteration.

6. The method of claim 1, wherein the region of interest
is i) a portion of the object of a specific tissue type, in
particular soft tissue, or ii) a specific anatomical region or
structure.

7. The method of claim 1, wherein the ROI excludes 1)
image data representative of a peripheral region of said
object in said plane or ii) excludes image points represen-
tative of an object portion having an attenuation coeflicient
lower than a threshold or iii) excludes image data represen-
tative of object background.

8. The method of claim 1, wherein the parameterized
second function comprises an inverse of the statistical
variances obtained from the projection data.

9. The method of claim 1, wherein the exponent parameter
is Va.

10. The method of claim 1, wherein the computing of the
regularization parameter and/or the corresponding normal-
ization includes re-using one or more terms, said one or
more terms previously formed in the or a previous iteration
for updating a previous estimate for the image point.

11. The method of claim 1, wherein the regularization
parameter is computed and represented at a lower resolution
than that of the reconstructed image volume, wherein the
regularization parameter as applied in the reconstructing
step is retrieved via interpolation from said lower resolution
regularization parameter.

12. The method of claim 1, wherein the projection data is
obtained from a differential phase contrast imaging opera-
tion.

13. An image processor apparatus configured to process
projection data according to the method of claim 1.

14. A non-transitory computer readable medium having
stored thereon a computer program which, when executed
by a processor, is adapted to perform the method of claim 1.
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